
The future of animal feed

Sustainability and food safety implications of alternative protein feed sources for pigs

llias Kyriazakis

Contributions to overall carbon footprint of a pig farm (kg CO₂eq/kg deadweight)

- Drivers to shift from conventional protein feeds
- Alternative protein sources for livestock feeds: implications to sustainability and food safety
- Engaging key stakeholders to explore commercial implementation of alternatives
- Recommendations for future research
- Key recommendations for policy

Drivers for change

- Pig systems rely on unsustainable protein sources (i.e., imported soy)
- High Feed vs Food vs Energy competition exists for resources
- Conventional protein sources are associated with environmental impacts
- Economic and geo-political uncertainties exist (i.e., energy prices, trading partnerships)

Drivers for change

- Livestock feed -> largest coverage agri land globally (~2 x food production)
- Expansion of soy production in global South → land degradation, deforestation, biodiversity decline, GWP, water depletion
- Transportation over long distances

 emissions, costs, vulnerable supply chains to interruption
- Feed & food safety of conventional feeds
 - chemical contamination due to production practices (e.g., pesticides)
 - biological contamination due to long-term storage and transportation (e.g., mycotoxins)

Questions Considered

What **alternatives** could help **substitute** conventional, unsustainable protein feed ingredients (e.g., imported soy)?

How **environmentally** friendly, **commercially** viable, **affordable**, and **safe** are they likely to be?

Do they pose any significant risks to **feed & food safety** and **security**?

How can they contribute towards **sustainable development** of the **livestock sector**?

GM/GE protein crops

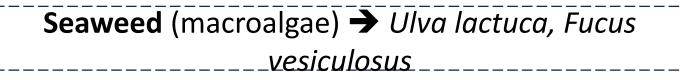
Potato → AmA1 protein

Soy → MON 87708 × MON 89788

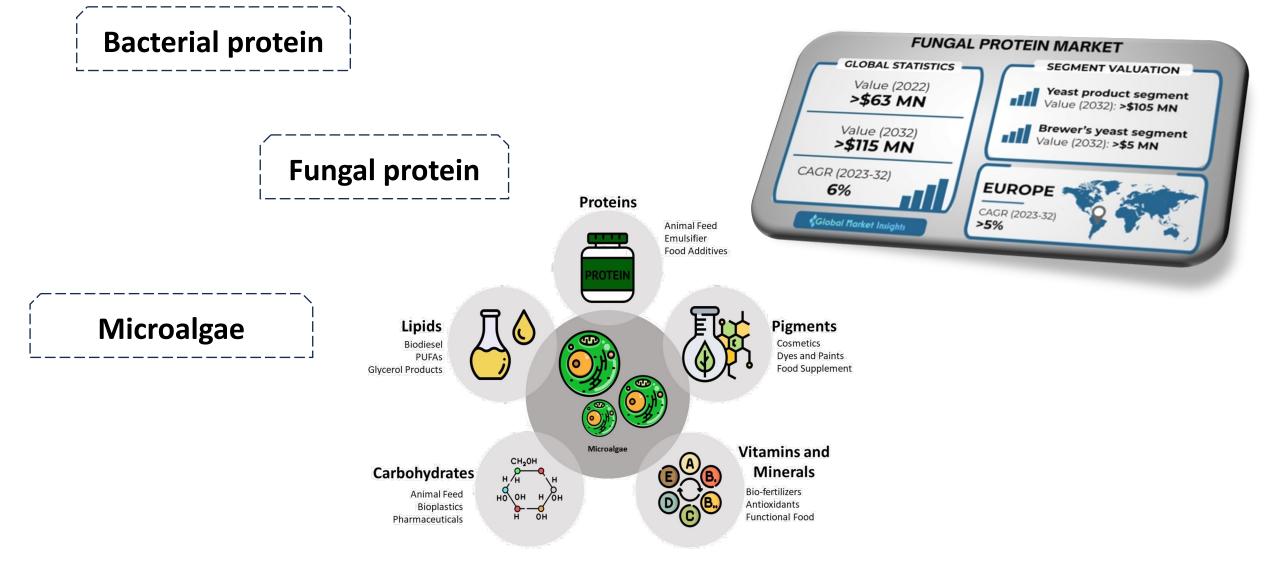
Maize gluten meal \rightarrow Mon 810

Home-grown protein crops I

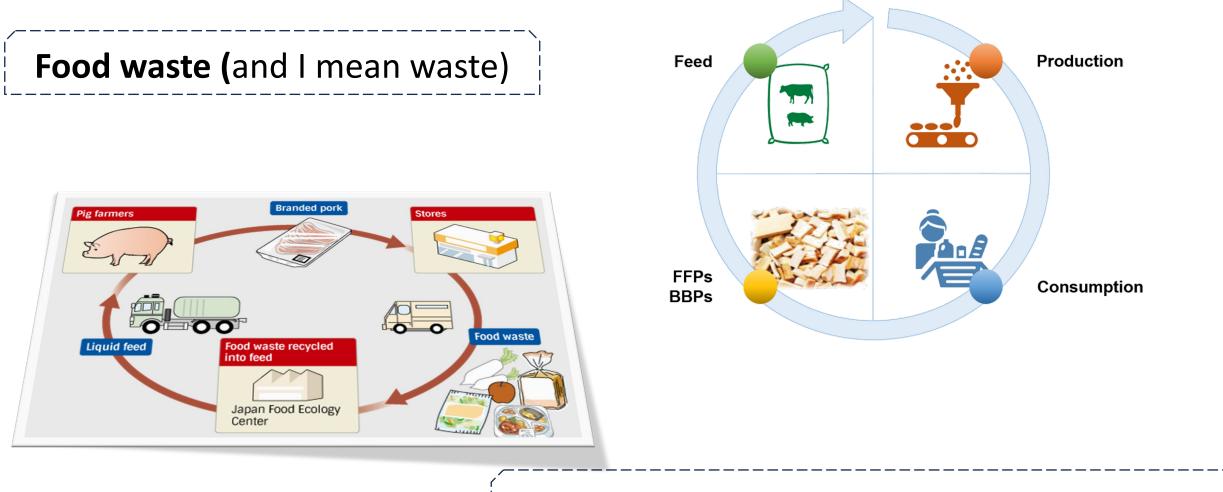
Home grown legumes → faba beans, peas, lupins



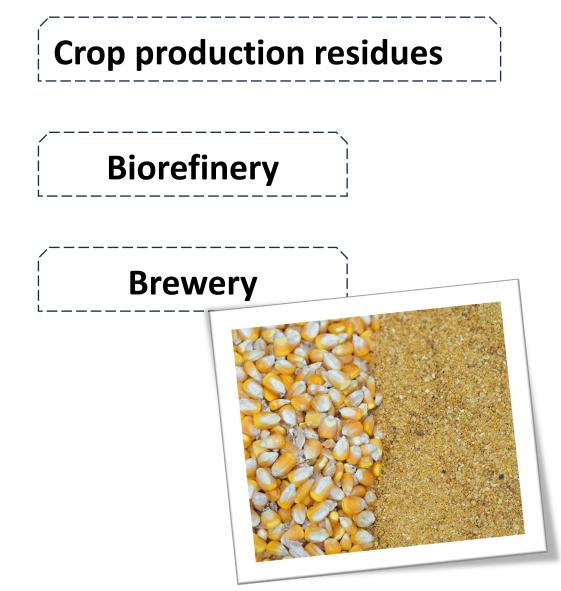
Home-grown protein crops II

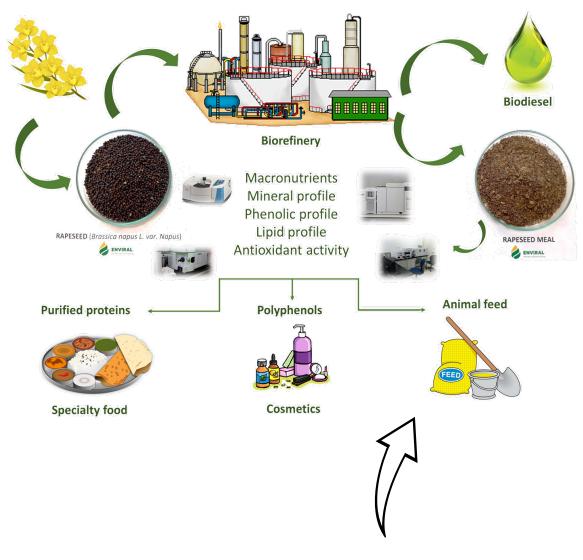


Grass/ Leaf Protein Concentrate


Hydroponic fodder from cereal grain

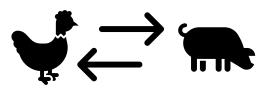
Cellular agriculture for protein feeds




Circular streams as protein feeds I

Former foods & food industry by-products

Circular streams as protein feeds II


Animal by-products (PAPs)

Poultry / ruminant??? by-products

Insect-based feeds

Novel ingredient impacts

The environmental burdens of soymeal and several alternative (novel) ingredients

Ingredient	GHG (CO ₂ eqv.; kg kg ⁻ ¹)	ALU (m² kg⁻¹)	Total N content (kg kg⁻¹)	Total P content (kg kg⁻¹)
Soymeal (imported)	3.05	3.11	0.075	0.006
Microalgae	2.31	0.034	0.093	0.014
Macroalgae	2.10	0.021	0.037	0.002
Duckweed	1.03	0.004	0.048	0.004
Yeast protein concentrate (YPC)	1.08	1.26	0.108	0.013
Bacterial protein meal (BPM)	1.49	0.026	0.117	0.015
Leaf protein concentrate (LPC)	0.611	1.98	0.093	0.005
Insect meal	2.91	1.06	0.084	0.008

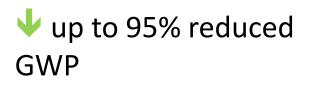
Pig performance on Peas and Beans compared to soya (Green Pig Project)

Grower Phase (30-55kg)	SBM	Prophet (peas)	Fuego (field beans - high tannin) - Spring	Tattoo (field beans - low tannin)	Wizard (field beans - high tannin) Winter	sed	Diet	SBM vs. pulse	Peas vs. faba bean	P values High vs. Iow tannin	P values Spring vs. Summer sown
Feed Intake (kg)	48	48	46	46	47	1.8	0.838	0.482	0.371	0.825	0.824
Daily liveweight gain (kg/day)	0.92	0.95	0.99	0.96	1.02	0.035	0.065	0.027	0.190	0.156	0.464
Feed Conversion Ratio	1.92	1.91	1.86	1.85	1.87	0.074	0.834	0.481	0.367	0.821	0.827
Finisher Phase (55-95kg)											
Feed Intake (kg)	122	119	118	116	122	5.6	0.810	0.429	0.997	0.455	0.547
Daily liveweight gain (kg/day)	1.13	1.19	1.17	1.1	1.14	0.049	0.482	0.561	0.226	0.256	0.558
Feed Conversion Ratio	3.05	2.97	2.95	2.9	3.04	0.14	0.811	0.430	0.997	0.454	0.546

White, G A, et al, (2015) Animal Feed Science and Technology, 209, 202 - 210

Insect farming 90% \checkmark land than soy

x11 times land degradation



Land use related

Opportunities

GHG / C-footprint / GWP

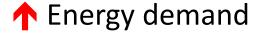
Opportunities

Biodiversity

Acidification Eutrophication

Water quality Resource depletion 97% / 98% EP / AP
Synthetic / chemical inputs
Wastewater through upcycling

Land abandonment


Land use change in global

North

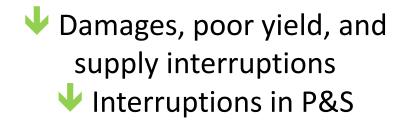

Land use related

Risks

GHG / C-footprint / GWP

Acidification Eutrophication

N and P in livestock manure



Economic implications

Opportunities

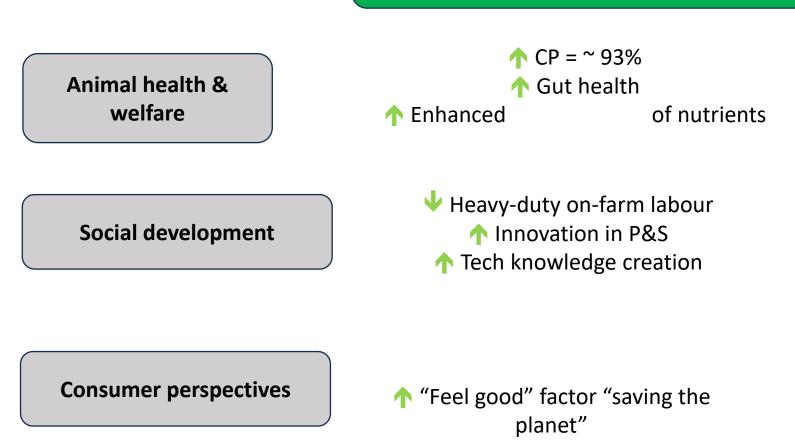
Production & supply (P&S) economics Input costs
 Transportation compared to import
 Access to labour = local P&S and less heavy-duty operations

Robustness to economic uncertainties & extreme events

Economic implications

Opportunities

Risks


Production & supply economics Input costs
 Transportation compared to import
 Access to labour = local P&S and less heavy-duty operations Capital costs at commercial scales
 Reduced tech availability for commercialisation
 Operating costs = energy

Robustness to economic uncertainties & extreme events Damages, poor yield, and supply interruptions
 Interruptions in P&S Volatility of prices due to energy

Cost of production = reliance on advanced biotechnology and future tech trends

Social implications

Opportunities

Social implications

Opportunities

Animal health & welfare

CP = ~ 93%
 Gut health
 Enhanced bioavailability of nutrients

Social development

Heavy-duty on-farm labour
 Innovation in P&S
 Tech knowledge creation

 Livestock acceptability, inefficient feeding and impaired growth
 Biochemical contamination due to poor hygienic processing

Risks

 Unemployment due to automation in novel P&S
 Impoverished global South

Consumer perspectives

Feel good" factor "saving the planet" Misinformation, biases, "disgust" factor
 Feed & food fraud to improve marketing

Food safety implications

Opportunities

Bio-contamination

Mycotoxin contamination due to transportation & long-term storage

Chemical contamination

Bioaccumulation of pesticides, heavy metals

Allergenicity

GM/GE crops reducing allergy inducing proteins

Food safety implications

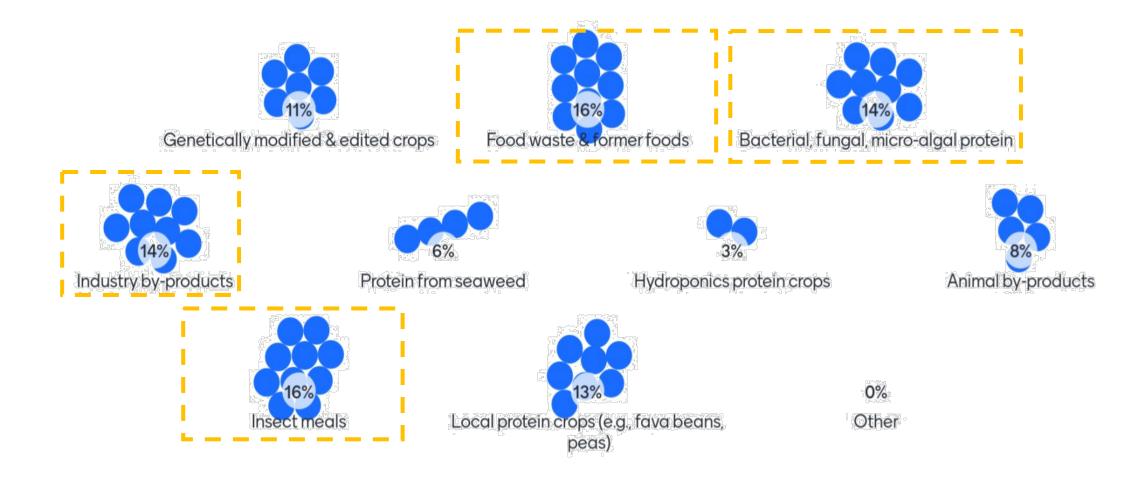
Opportunities

Risks

Bio-contamination

Mycotoxin contamination due to transportation & long-term storage disease outbreaks e.g., BSE/TSEs
 pathogens due to poor hygienic processing of food waste and waste substrates

Chemical contamination


Bioaccumulation of pesticides, heavy metals

Bioaccumulation of nanoplastics, microplastics, and packaging residues from waste streams

Allergenicity

GM/GE crops reducing allergy inducing proteins ↑ Major allergens present in several alternatives

Stakeholder Focus within 5-10 years

Disruptive factors Priority considering urgency to address

20%	Food and feed safety
16%	Increasing costs
15%	Slow regulatory processes due to multiple dpts involved
14%	Inconsistent supply / availability
13%	Uncertainty in performance (nutrition & sustainability) against conventional sources
11%	Consumer perception
8%	Feed vs bioenergy competition
3%	Geographical supply

Enabling factors Priority considering urgency to address

23%	Regulatory framework
15%	Cost-effectiveness of production & supply
15%	Availability of feed ingredient
10%	Consistency of feed ingredient
10%	Government restrictions on unsustainable protein sources
8%	Enhanced understanding of sustainability hotspots (more information / evidence)
7%	Market demands
6%	Advancements in technology (incl. biotechnology)
5%	Communication - raising awareness regarding alternatives
3%	Transparency

Where should research effort be directed to?

Consider different production & supply scenarios

Better understand factors affecting public / customer acceptability (eg for use of circular feed solutions)

Micro and macroeconomic investigations of livestock farm profitability using alternatives

Enhance knowledge around nutritional profile of alternatives

Detailed LCA and compilation of LCI of primary data

Recommendations for policy making

Parity with EU legislation for insect and PAP production & use (UK relevant)

Revise and aim to reduce legal barriers

Accelerate circular bioeconomy

Recommendations for policy making

Decouple protein feed production from fossil fuel

Further enrich the feed and **food** regulatory system

Find out more about this work in:

The Future of Animal Feed: Acknowledgements

Acknowledgements for the Future of animal feed report.

Last updated: 20 February 2023

Results available: No results available

Area of research interest: Emerging challenges and opportunities

Research topics: Emerging issues

Project code: FS900202

Authors: Dr. Georgios Pexas; Prof. Ilias Kyriazakis; Prof. Bob Doherty

DOI: https://doi.org//10.46756/sci.fsa.gzi586

Planned completion: 2 February 2023

Project status: Completed

Date published: 28 April 2023

Frontiers | Frontiers in Sustainable Food Systems

TYPE Review PUBLISHED 13 September 2023 DOI 10.3389/fsufs.2023.1188467

Check for updates

OPEN ACCESS

EDITED BY S. Mondal, National Institute of Animal Nutrition and Physiology (ICAR), India

REVIEWED BY Doriana Eurosia Angela Tedesco, University of Milan, Italy Christian Visscher, University of Veterinary Medicine Hannover, Germany

CORRESPONDENCE Georgios Pexas III g.pexas@reading.ac.uk RECEIVED 17 March 2023 ACCEPTED 30 August 2023 PUBLISHED 13 September 2023

CITATION

Pexas G, Doherty B and Kyriazakis I (2023) The future of protein sources in livestock feeds: implications for sustainability and food safety. Front. Sustain. Food Syst. 7:1188467. doi: 10.3389/fsufs.2023.1188467

COPWRGHT © 2023 Pexas, Doherty and Kyriazakis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The future of protein sources in livestock feeds: implications for sustainability and food safety

Georgios Pexas^{3*}, Bob Doherty² and Ilias Kyriazakis¹

¹Institute for Global Food Security, Queen's University, Belfast, United Kingdom, ²School for Business and Society, University of York, York, United Kingdom

The feed-food competition for environmental and economic resources raises increasing concerns about the production and supply of protein for the global livestock sector. Risks to food-security and approaching deadlines for global sustainable development, means exploring alternative protein feed ingredients is imperative. This *Review* discusses the potential for soilless, local and circular protein feed sources to provide solutions for key sustainability and food-security threats to the global livestock sector, through their partial incorporation in future livestock feeds and feeding systems. In doing so, it offers a holistic insight into the potential opportunities, but also risks associated with such alternatives. Through this analysis, a four-point strategic plan is synthesized to facilitate higher-level policy making that may enable implementation of these alternative ingredients at commercial scales, building toward a more sustainable and resilient livestock industry.

KEYWORDS

alternative protein sources, cellular agriculture, circular agriculture, environmental impact, food policy, food safety, soya production, sustainable development

